Waveless Stern の研究 (その2)

正員 熊野 道雄*

A Study on the Waveless Stern (Part II)

By Michio Kumano, Member

Summary

This paper deals with the comparison between the calculated and measured ΔC_{wA} of the Waveless Stern, where ΔC_{wA} means the difference of the wave-making resistance between the models without and with the stern bulb.

The observed position of the stern flow separation (named X_s) is presented, together with the comparison between the observed and the calculated area of separation by Buri's method.

The conclusions obtained are as follows.

1. The reduction factor β for the stern wave of the finer model C-101 falls by fitting the stern bulb, while for the fuller model C-201, it keeps same.

2. The area aft the observed X_s seems to be an actual separation area. The time-mean and the fluctuation are affected according to the phase (and amplitude) of the bow wave observed at the vicinity of the separation point.

1 緒 言

著者は第1報1)において，Waveless Stern の抵抗試験の成績を報告したが，この第2報においては，船尾バルブを付けることにより期待できる造波抵抗変化量を理論的に計算し，実験測定値との比較を行なった。またWaveless Stern 設計の前提条件として，Sterne Wave そのものの詳細な機構を知る必要があるので，このような目的で行なった船尾局部流の瞬間的および連続的写真観察，ならびにその観察記録を船首波の影響を考慮した剝離線計算と比較検討した結果について報告する。

2 造波抵抗変化量の計算および実験との比較

抵抗実験により船尾バルブ付き造波抵抗係数 (C_w と略称する) が実験的に求められる。それと計算された C_w を比較してみると，理論がどの程度まで適用できるかがわかる。船首バルブの場合はこの方法がとられている。しかし，船尾バルブにおいては，この方法は採用できない。船尾波にまつわる造波干渉の機構が，粘性影響により複雑となること，および，船尾バルブは原則として船首バルブ付き船型に取付ける関係上，この方法では相対値の格段に大きい船首バルブ計算の誤差が混入するからである。以下これにかわる方法として，船尾バルブなしと船尾バルブ付きの C_w の差，すなわち造波抵抗変化量 (ΔC_{wA} と略称する) を計算し，実験より求めた ΔC_{wA} と比較することにした。この方法によれば，まえのべた誤差の混入がさけられる点で便利である。

2-1 ΔC_{wA} の計算法

ΔC_{wA} を求める基本的な考え方は文献2)に付録3)の方法に準ずる。ただし，そこには船首バルブに関連して，理想流体としてのとり扱いが許される船首波のみが対象とされているが，いまの場合は粘性影響を無視できない船尾波を対象としているので，いわゆる粘性修正をここに取ることにされる必要がある。Fig.1にC-101およびC-201の粘性修正係数 β, δ を示す。

計算に当って，実際には，fairing 部分をもつ船尾バルブ全体としての効果を近似的に単独球，すなわち1コ

*　香川大学文学部

* 昭和36年12月19日
の doublet で代表させる。その球としては、まず 1 号に船尾パルプ中心位置において、船尾パルプ内に接する球（半径 a_0）を考えてみる。このほかに fairing 部もかなりの容積を占めるので、若干の造波効果を有し、有効（等価球）の半径 a_1 はこれより若干大きいものと考えられる ($a_0 > a_1$)。船首パルプにおいては粘性修正の必要がないから、船首パルプの造波効果を考慮することにより、直ちに a_1 が求まり、文献 3) によれば a_1 は fairing 部の容積をも含めて入った仮想球の半径にほぼ等しいことが示されている。ところが、いまの場合さらにこれに粘性修正をとり入れるので、船尾パルプに関する限り正確な a_1 はわからない。供試船型である cos 船型の船首尾波および球の波の振幅関数は長さの次元をもち、それぞれ $A_F(\theta), A_A(\theta)$ および $B_A(\theta)$ とする。そのほか記号の意味については前報通りとする。

$$A_F(\theta)/L = \frac{\beta}{\pi} \frac{K_L U(K_T L, \theta) \sec^2 \theta}{(K_T L \sec \theta)^2 - \pi^2} \frac{\epsilon}{\pi} \frac{\partial A_F(\theta)}{\partial \theta} (1)$$

$$B_A(\theta)/L = 2 \lambda (K_L L)^{a_1} (a_0 L)^{a_2} \exp (-K_T L \sec^2 \theta) \sec^2 \theta (2)$$

ここで $\lambda = \beta a_1 (a_1/a_0)^{a_2}, \beta = 1, a_0/a_1 > 1$。

λ は内接球（半径 a_0）の造波効果を船尾パルプの造波効果にどのようなものであり、β は船尾パルプの粘性修正係数である。λ は 2-2 にのべるように、速度により大きく変わるようであるが、一応一定として計算する。cos 船型の造波抵抗のうち、基本項を $C_w (1)$、干渉項を $C_w (2)$ とすれば、周波がないため簡単で

$$C_w = C_w (1) + C_w (2) (3)$$

$$C_w (1) = C_w F + C_w A = \frac{2 \pi}{L^2} \int_0^{\pi/2} \left[\frac{\partial A_F(\theta)}{\partial \theta} \right]^2 + \left[\frac{\partial A_A(\theta)}{\partial \theta} \right]^2 \sec^2 \theta \theta d\theta (4)$$

$c_w F, c_w A$ はそれぞれ船首尾受持部分である。$c_w A$ のみとりだけで

$$C_w A = \frac{2 \pi}{L^2} \int_0^{\pi/2} \left[\frac{\partial A_A(\theta)}{\partial \theta} \right]^2 \sec^2 \theta d\theta (5)$$

$$C_w A' = \frac{2 \pi}{L^2} \int_0^{\pi/2} \left[\frac{\partial A_A(\theta)}{\partial \theta} - \frac{\partial B_A(\theta)}{\partial \theta} \right]^2 \cos^2 \theta d\theta (6)$$

ここに $c_w A'$ は船尾パルプ付近の $c_w A$ で、(6) より (5) を差し引くと

$$A C_w A (1) = C_w A' - C_w (2) (7)$$

$AC_w A (1)$ は船尾パルプ付加による造波抵抗変化量 $AC_w A$ のうちの基本項であり、$A_A (\theta)$ は船尾パルプを付加した場合の船尾波振幅関数である。船尾パルプにより β が変わるかも知れないため’ を付け $A_A (\theta)$ と区別したわけである。$AC_w A$ の干渉項 $AC_w A (2)$ を計算するには、C_w 曲線より hump-hollow の F 数を求める、その振幅を $C_w (2)$ とすれば

$$AC_w A (2) = \frac{B_A(\theta)/A_A(\theta)}{\sec^2 \theta} \times C_w (2) (8)$$

$C_w (2)$ は hump のとき負、hollow のとき正とする。

$$AC_w A = AC_w A (1) + AC_w A (2) (9)$$

以上の計算方法にもついて、前報において実測 C_w 曲線を示した 3 種の船尾パルプ*について、$AC_w A$ の理論計算を行ない、これを実測値と比較した。

2-2 C-101 F×A1, C-101 F×A9

Fig. 2, 3 にそれぞれの船尾パルプについて、比較を示す。

Fig. 2 の船尾パルプ A1 を内接球の半径 $a_1 (a_1L = 0.02)$ を変えないで fairing 部をずらしたのが Fig. 3 の A9 である。A1 は $\lambda = 2.2$ で 1 点線とし、実線で示す測定値に近づいた。A9 は $\lambda = 1$ ではほぼ妥当な曲線を示している。これより A9 の程度まで fairing 部をずらせば、$\beta a_1 (a_1/a_0)^{a_2} = 1.2$, すなわち, $a_0/a_1 > 1$ は 1 にほぼ等しくなり、3 乗で効くとしても βa_1 ひいては $\lambda = 1$ となったと思われる。A1, A9 共通にい

* 模型 C-101 については船尾パルプ 1 種、船尾パルプ 2 種 (C-101 F×A と C-101 F×A9), 模型 C-201 については船尾パルプ 2 種、船尾パルプ 1 種 (C-201 F×A4 と C-201 F×A4), 合計 4 種の組合せがある。
Waveless Stern の研究（その2） 89

えることは、$F=0.30$ を境として、測定値は計算値にくらべ、高速域においては大きめに、低速域においては小さめにでていることである。特に、A1 にふつは $F=0.2$ 以下で測定 $AC_{m\alpha}$ の絶対値が小さくなっている。これは次のように考えられる。

(a) 船尾バルブを付けることにより、主船体船尾波の β が低下する。（δ はやや増加する。後述）
(b) λ は一定でなく、低速においては明らかに低下する。

(a) あるいは (b) または (a) と (b) が同時に起こり、結果の不一致を生じたと考える。しかし実験より繰返される $AC_{m\alpha}$ のみからは (a), (b) しかきかれる組合せを探るか分離できない。そこで A1 をとり上げ、次のように仮定する。

(1) 問題とする速度領域 $F=0.25$ ～0.35 においては現象 (b) はおこらない。すなわち $\lambda=2.2$ 一定とする。
(2) $\beta=0.6$ に低下したとする。

(1)、(2) の仮定のもとで $AC_{m\alpha}(1)$ が 1 点線である。傾向として測定値に近づいたこと、$F=0.30$ 以下ではまだかなりの差があること、および破線で記入した球の面形抵抗 $C_{m\alpha}$ を参照することにより、次に挙げる点は確実にいえると思う。

(1) C-101 程度の fine な船型（$\Delta/L^{3}=3.968$）にあっても、船尾バルブにより β が低下する。その割合はおおよそ 7 割程度である。
(2) λ は高速域では一定値であるが、$F=0.25$ 以下ではかなり急激に低下する。

2-3 C-201F×A4, C-201F2×A4

Fig. 4、5 にその比較を示す。

$\lambda=1$ として、実験と計算はかなりよく一致している。これも C-101F×A9 の $\lambda=1$ と同じ理由によるのであろう。また、β も Fig. 1 のまま、変っていないようである。λ がやや速い低速域で急激に低下することは C-101 の船尾バルブとは同じである。次に、干渉項 $AC_{m\alpha}(2)$ に着目する。これは両船形とも船尾バルブにより船尾波が

* 本報告における船尾バルブの場合は（6）式において $F<0.20$ では $A_{A}(\theta) \ll B_{A}(\theta)$ であるから、近似的に $C_{m\alpha}=C_{m\beta}=2\pi \int_{0}^{\lambda} \{B_{A}(\theta)\}^{2} \cos \theta d\theta$ となり、これは F 数が小さいほど近似度がよくなる。
3 船尾局部流の写真観察

第1報に詳述したように、船尾バルブの中心位置および大きさを決めるため、
またΔCwの計算を行うため、βの値および船尾波の（流速比の）
前進量を知る必要がある。

これは抵抗試験および船側波形の観察より求めることができ、Fig.1に示されている。この種の間接的手段によっても、船尾波に対する粘性影響を察知できるが、この間接的方法による結果を、ステレオ写真なり、APより後方に板をのせた船尾波形をとる等、直接的方法による資料と比較することにより、粘性影響についての知識が完璧になることのようと思われる。

船尾波のステレオ写真は目下解析中であり、波形測定はその振幅が小さいため意味のある資料が得られるかどうかは試みである。上述のように、船尾波を立体的に調べることのほかに、船尾局部流の写真をAP直上より撮り、平面的に船尾波の波形をとらえることによっても、前記立体的方法にくらべ、手軽な割合に有用な知識を得ることができる。

粘性影響は具体的には船尾における剥離現象としてあらわれ、それは船尾波形写真により認知できる。文献にしたがい、船尾付近において明確な1組のcrest lineが側面よりdivergeしつつある点とAP間の船体中心線に沿った距離をXₙとする。前記文献に述べられているように、Xₙとδを直接関連付けることは物理的には見かけ以上に困難であるにしても、実際的には関連があるように見える。本報においては、以下Wave-less Sternの予備実験として剥離現象が比較的顕著にあらわれるfullな方の模型C-201（およびC-201F2）を供試船型とし

（1）抵抗試験よりのδ-F数関係を写真観察によるXₙ/L-F数関係によりcheckする
（2）乱流境界層計算による剥離域とXₙ/Lとの比較
（3）船首バルブの有無によるXₙ/L-F数関係の相違について
（4）航走中のXₙ/Lの時間的変動および安定性
以上の4点にわかり調べた結果についてのべる。

3-1 剥離域の推定計算

C-201について、Buriの方法により剥離域を計算した。文献に示されているように、船型計算の過程において、各曲線（WL, SL(z=0.05), SL(z=0.08), KLの4本）についてμ, ν, wが与えられているので、それを利用する。Buriの方法における形状数Fの具体的な数値については、田宮教授の数値をそのまま使わせて頂いた。すなわち

\[F = 0.017 \frac{H}{U_o} \frac{dU}{dS} \] \((10) \)

ここに \(U = u^2 + v^2 + w^2 \), \(H = \int_0^S U \cdot dS \), \(S \) は船体表面と沿って測った長さで、FPよりもなるものとする。
で剥離するとして計算したのが Fig. 6 の1点線である。
つぎに F=0.233～0.316 の船側波形を参考とし、船首波（free waveの成分のみ）のAP 附近におけるwave slope により dU/dS を修正して得た剥離域を2点線で示す。①はもっとも剥離域の前進した場合で、Fig. 6 には便宜上 hump としてあるが、一般にはその peak は一致しない。
②も同様であり 2～3 にのべる。

3-2 計算剥離域と X_{ω}/L の比較

\(F \)数をbaseとして、C-201 の X_{ω}/L よりもWLにおける計算剝離域を示したのがFig. 7である。

3-3 C-201 とC-201 F 2 の X_{ω}/L および \(\delta_a, \delta_b \)との比較

Fig. 8 はC-201 の X_{ω}/L を実験でC-201 F 2 を1点線で示し、X_{ω}/L は瞬間的および連続的撮影によるもの混合であるが、両者よく一致し、瞬間的撮影によるX_{ω}/Lも信頼がおけることがわかる。それは後述 Fig. 10 を見ても了解できようである。船首バルブが船首波をcancelしてwave slope による追加速度割配が小さくなる。そこでF数によるX_{ω}/L の山谷の傾向が幾分緩和されるだろうと予想したが、実事その傾向が明確にあらわれている。しかしX_{ω}のもっとも前進するF=0.28～0.30 付近のX_{ω}の値はあまり変化しないようである。Fig. 8 には船尾バルブ付きC-201 F 2×A 4 のX_{ω}/L も示してあるが、F=0.20～0.35 の間X_{ω}/L=0である。破線は \(\delta \)および、\(\delta \)より船首波前進量 \(\delta_p \)を差し引いた \(\delta_a \)であるが、\(\delta_a \)はX_{ω}/L の mean を通じその

波を考慮しない場合のWL 剝離域と船首波前進量とは3～4%でほぼ一致したため、文献7)によりAPにおけるfree waveの位相を考え、WLの剥離域を推定したのがFig. 7 中の2点線で波を考慮しない剝離域が1点線でF数（あるいはRe数）に無関係に一定である。これはすこし問題があるが、定数の関係のためで止むを得ない。X_{ω}/L と比較すると振幅はかなり小さいが、meanとしてはいい所で、位相では抵抗試験においてもっとも重要なloopt 現象等の問題の多いsecond hump の上り坂、この船型ではF=0.29 付近においては完全に一致している。これよりX_{ω}より出発するcrest line は剝離域と極めて密

接な関係があり、断定はできないが、X_{ω}の後方は剝離域であるといつてよいと思う。しかし、これは船体表面の圧力測定または水中写真等の実験により確かめなければならない問題である。
関連がよくわかる。（Fig. 8 の 8' は δα と読みかえることにする。）

3-4 C-201 と C-201F2 の Xs/L の時間的変動

Xs/L の時間的変動を調べるために、1 船走り 10 秒を 1 本のフィルムに撮る。もちろん撮影中変常速度を保つ必要がある。3-6 コマ/秒の速さでニコン F・モータードライブにより連続撮影を行なう。そのフィルムの各コマの Xs/L を読む。その時間的変動の様相の記録の中より、3 コの速度を選んだのが Fig. 9 である。

\[C-201 \] (WITHOUT FORE BULB)
\[F = 0.2503 \]

\[\]

\[F = 0.2894 \]

\[\]

\[F = 0.3334 \]

\[\]

\[C-201F2 \] (WITH FORE BULB)
\[F = 0.2510 \]

\[\]

\[F = 0.2870 \]

\[\]

\[F = 0.3350 \]

\[\]

OBSERVED FLUCTUATION OF STERN FLOW SEPARATION

PORT

STARBOARD

Fig. 9

C-201, C-201F2 より各 3 コゆえ、計 6 コで上 3 行が C-201、下 3 行が C-201F2 で、Xs/L は主 jeux 右系別々に示している。Xs/L を 0.005 より細かく読むことは、写真撮影・波紋の性質等の制約のため、および Fig 10 に示す処理のため断念した。
そのため、変動の記録が折線となっている。
Fig. 9 から次のことことがわかる。
（1）C-201 と C-201F2 との比較……、船首バルブ付近は時間的変動が小さい。船首部が cancel されてこうなるのであら、X_s/L の位置のあらゆる時間的変動をも長時間に支配方することがわかる。
(2) F 数によりどう変わるか……
（a）C-201 にあつては $F=0.28$ ～ 0.29
がもともとしかなりに変動した。その上下
$F=0.20$ 付近も完全流体に近い流れとされている $F=0.33$ 以上も、時間的変動
の様相そのものは変わらない。
（b）C-201F2 は F 数により変動の様相
の変化がみられない。$F=0.30$ の高速
で、やや小さくなるようである。
Fig. 10 は crest line がある特定の X_s/L
から出発している時間の、全数値時間に対する割
合を示した。左右のようなもしそしてあり、パ
ッチした矩形が C-201F2 で、矩形のままが
C-201，両者の中央が予定値に当る。変動の
振幅の一 Fig. 10 より明らかで、それは船首バルブの有無にあまり関係ないようである。すなわち
$F=0.27$ ～ 0.30 の間で振幅が小さくなっている。

4 す す び

本報告により明らかにされたことを要約すると、次のようになる。
（1）第 1 報すすびにおいては、推測の程度であったものを、計算と比較して確めた。すなわち
（a）full な模型 C-201 に船尾バルブを付けても、主船体船尾波の粘性性係数 β は変化しないが、fine
な C-101 にあつては β はさらに小さく（平均してもとの値の 7 割程度）なるとみえてよい。両模型とも β
が幾分大きくなるが現在の解析の段階では定量的なことはいない。
（b）船尾バルブの $\lambda (=\beta a_s(a_1 a_s)^{1/3})$ は $2 \sim 2.5$ まで $\lambda=1$ であったが別に意味はない。λ をさらに
分解するためには B_k または a_1/a_{s1} の値が必要である。λ は低速において小さくなる。
（2）C-201 を供試船型とする写真観察では、船首バルブなしと船首バルブつつきの X_s/L を、計算剥離域を参
照しながら比較した。そして
（a）$X_s/L \sim AP$ 間の船体表面は剥離域である公算大きい。船首付近の船側について直接実験で確かめる
必要がある。
(b）X_s/L およびその変動は船首部の位相のみならず、その振幅と波長に影響される。すなわち X_s/L
が同じ値であっても X_s 波長の大きい低速において、実効的に船体に対する粘性効果は大きい（具体的的に
は β は小さく、δ は大きい）。

終に、本研究に関し終始御指導を賜わたった東京大学乾燥夫教授ならびに茨城大学高橋英夫助教授に厚く感謝
いたします。さらに直接、実験解析計算に協力された横谷 僚君はか東大船型本斎の方々ならびに香川大学講師
勝 君にお礼を申し上げます。
文献

1) 著者: Waveless Stern の研究 (その1) 造船協会論文集108号
2) 乾・高梅・龍野: 球状船首の進波効果に関する水槽試験 同上
3) 高梅哲夫: Waveless Bow の研究 (その1) 同上
4) 乾・増永・三浦・大越: 写真による船尾進波機構の観察 造船協会論文集101号
5) 高梅哲夫: 電子計算機による船型の計算 茨城大学研究報告
6) 田宮真: 摩擦抵抗に対する Form Effect(I) 造船協会論文集88号
7) 榊谷・田賀野: 昭和35.3 東大船舶工学科卒業論文